

Mid-Point of 5G Journey

Dr. Chih-Lin I **CMCC Chief Scientist, Wireless Technologies CMRI, China Mobile**

Keynote, European Conference on Networks & Comm. (EUCNC). June 29, 2016, Athens, Greece

www.10086.cn

From 2011 to 2020 (Rethink Fundamentals)

Green Communication Research Center established in Oct. 2011,

Soft

To start a green journey of wireless systems

Rethink Ring & Young

For no more "cells" via C-RAN Rethink Signaling & Control

To make network application/load aware

Rethink Antenna

To make BS "invisible" via SmarTile

Rethink Spectrum & Air Interface

To enable wireless signal to "dress for the occasion" via SDAI

绿色通信研究中心 initiated 5G Key Tech R&D.

Rethink Fronthaul

To enable Soft RAN via NGFI

Rethink Protocol Stack

To enable User Centric Cell and real-time flexible air interface via MCD

"Towards Green & Soft: A 5G Perspective" IEEE Comm. Magazine, Vol.52, Feb.2014

"5G: rethink wireless communication for 2020+", Philosophical Trans. A. 374(2062), 2015

"New paradigm of 5G wireless internet", IEEE JSAC, vol.34, no.3, March 2016

IMT-2020 (5G) PG

The Group has 56 members including the main operators, vendors, universities, and research institutes in China.

3

5G KPIs (ITU-R WP5D, Jun 2015)

Feature Diagrams

Rushing towards 5G?

2016

AT&T (USA) Verizon (USA)

5G Field Trial

5

World's Largest 4G Network

BS

~1.28M 4G BSs

~1.4M @2016

Terminal

Sales volume 300M+ Types 2000+, Price <50\$

End of May, 2016

Subscriber

~409M Subscribers (@~835M)

~500M@2016

Coverage

~1.2B pop (~86%), Reach Villages

77TD-LTE commercial networks in 43 countries
 1.4 million + TD-LTE base stations

Sustainability needed for Operators

Operators' Annual Revenue and Profit						
Company	Revenue			Profit		
	2013	2014	2015	2013	2014	2015
China Tele (RMB)	321.6B	324.4B (0.90%)	331. 2B (2.1%)	17.6 B	17.7B (0.80%)	20.1B (19.2%)
China Uni. (RMB)	295.0B	284.7B (-3.50%)	277.0B (-2.7%)	10.4 B	12.06B (15.8%)	10.6B (-12%)
DOCOMO (Yen)	4461.2B	4383.4B (-1.7%)	4527.1B (3.3%)	464.7 B	410.1B (-11.8%)	548.5B (33.7%)
SKT (WON)	16602B	17164B (3.4%)	17136.7B(-0.2%)	1610 B	1799B (11.80%)	1515.9B(-15.7%)
AT&T (USD)	128.7B	132.4B (2.87%)	146.8B (10.84%)	18.6 B	6.5B (-64.90%)	13.3 B (104.7%)
Verizon (USD)	120.6B	127.1B (5.41%)	131.6B (3.57%)	11.5B	9.6B (-16.30%)	17.9 B(85.76%)
DEUTSCHE TELEKOM (EURO)	60.1B	62.7B (4.3%)	69.2B (10.37%)	2.8 B	2.4 B (-14.30%)	4.1B (70.83%)
Telefónica (FURO)	45.1B	50.4B (11.70%)	47.2 B (-6.27%)	2.23 B	3.0 B (34.70%)	2.7 B (-8.53%)

Operators, Appual Povenue and Profit

China Mobile 4G+ Network Development

VoLTE

Has been widely deployed in **Commercial Network (2016)**

Small Cell

~ 100,000 Small BSs to be deployed in 2016

CA

UL: 2 CC CA, DL: 3CC CA Field test

DL 2CC CA has been deployed in some provinces

IOT

Pre-commercialization at end of 2017

Wider

Deeper

3D-MIMO

3D-MIMO BS Test in 4G **Commercial Network** 8888

Thicker

Faster

DL: 256QAM; UL: 64QAM Most of vendors support, some terminals will support in later of 2016

8

World's First 128 Ant BS Deployment in 4G Network 中国移动

Massive MIMO (128 ant.) Pre-com. Product.

CMCC & Huawei mMIMO field test in Shanghai Û

China Mobile, Shanghai, Sep.18,2015

Targets: 3D coverage, deep coverage, thp improve

Location: urban district with high buildings (ChangShou Road, Shanghai)

Scheme (high-rise):

BS (25m), aims to cover a 75m building & neighbouring roads

Tech: 3D beamforming & multi-sector networking

Up to 43bit/Hz 5~6x improve

9

Rethink Fundamentals

Green Communication Research Center established in Oct. 2011, 绿色通信研究中心 initiated 5G Key Tech R&D.

Rethink Shannon

To start a green journey of wireless systems

Rethink Ring & Young

For no more "cells" via C-RAN

Rethink Signaling & Control

To make network application/load aware

Rethink Antenna

To make BS "invisible" via SmarTile

Rethink Spectrum & Air Interface

To enable wireless signal to "dress for the occasion" via SDAI

Rethink Fronthaul

To enable Soft RAN via NGFI

Rethink Protocol Stack

To enable User Centric Cell and real-time flexible air interface via MCD

"Towards Green & Soft: A 5G Perspective" IEEE Comm. Magazine, Vol.52, Feb.2014

"5G: rethink wireless communication for 2020+", Philosophical Trans. A. 374(2062), 2015

"New paradigm of 5G wireless internet", IEEE JSAC, vol.34, no.3, March 2016

UCN (NMC)

中国移动 China Mobile

2G

SDAI: Software defined Air Interface

UCN: User Centric Network NMC: No More "Cells"

11

Green and Soft E2E Architecture with "Three Clouds"

User Centric RAN (UCN) of 5G ...

CN-RAN Repartition , Turbo Charged Edge , Network Slice as a Service, RAN restructure

13

C-RAN: Revolutionary Evolution of RAN

- Centralized Control and/or Processing
- Collaborative Radio
- Real-Time Cloud
- Clean System Target

WP "C-RAN: The road towards green RAN".[Online]. Available: labs.chinamobile.com/cran "Recent progress on C-RAN centralization & cloudification" in IEEE Access, 2014 "Cloud Radio Access Networks: Principles, Challenges, and Technologies " in ICC, 2015

Overcome the 4G FH Barrier

CPRI 2:1 compression with SFBD: already mature enough to save the fiber usage by four-folds

- Active WDM/OTN:
 - ✓ Gradually mature since 2015
 - ✓ Diverse functionalities: large capacity, multiplexing, protection, flexible networking
 - √Two major concern: cost (especially OTN solutions); demarcation
 - ✓ Applicable scenarios: C-RAN with high centralization scale

• Passive WDM:

- ✓ Maturate fast since 2013
- ✓ Low cost, easy installation, free of maintenance
- ✓ Little change on the transport. Infra.
- ✓ Applicable scenarios: small/medium centralization scale

4G C-RAN trials

& deployment

CMCC currentl C-RAN deployment maily adopts passive WDM.

C-RAN Deployment Progress (Since 2009)

● 中国移动 China M<u>obile</u>

C-RAN centralization as a preferred deployment solution in CMCC's "Network Deployment Guidance" (2016)

- 2016 deployment plan: extension to 7 provinces
- One province of the scale of around 2000 sites
- Various FH solutions verified
- Demonstration on TCO saving and performance improvement
 - Energy saving: 60%, CA gain: 83%~ 95%, UL CoMP gain: 50% ~ 300%

RAN Virtualization: the Latency Frontier

Founding NOC member of ETSI NFV ISG, the one to propose RAN virtualization in NFV WP (2012)

- NFV-compliant C-RAN implementation
 - VM realization of LTE
 - · Key technologies adopted
 - RT enahncement: RT-Linux, DPDK, OVS
 - Effeciency improvement: RT-KVM
 - Management: Openstack

Commitment since 2013

- Optimization on interrupt latency: Average 4us v.s.
- ~100us for traditional system
- Optimization on platform processing latency: 25~30us v.s. 300~500us in traditional Linux system
- Optimization on VM communication latency: ~10us v.s. ~100us in traditional Linux system

Tsinghua University

Field Trial in 2015 C-RAN Virtualization field testhed @

Testbed:

- •1 TD-LTE macro outdoor BS
- 18 TD-LTE indoor BSs
- •1 GSM outdoor BS
- Area : 0.8km²,
- General Server/Switch based BBU pool (with PHY1 accelerators)

17

Persistence: Making C-RAN a Global Consensus

- Founding NOC member of ETSI NFV ISG, the one to propose RAN virtualization in NFV WP (2012)
- Platinum and board member of OPNFV (2014)
- Founding member of IEEE 1904.3 TF & leading the project of NGFI in CCSA (2015)
- C-RAN as a key component in NGMN 5G WP, FuTURE Forum 5G SIG WP, IMT-2020 WP (2015)
- C-RAN open source contribution in EURECOM (2015~)
- MWC showcase since 2014 & various events (2014~)

C-RAN based "Service on Edge" since 2012

C-RAN inherently support MEC

Open API provide the ability to capture the network status

Video optimization

Enable Low latency service

Demos as early as in MWC 2014

19

UCN Turbo Charged Edge: MEC

Field and Lab trial on Cache Cache hit · Scenarios: area without core network cache Solutions: Single Two-level cache Advantages: latency reduction & transmission saving Key concerns: Charging, Mobility management

Charging info.

Demo on video optimization for VIP users of iQIYI

RAN MEC

Packet analysis by MEC to distinguish the service and VIP users, then BS informed

•Lab trial: 50% saving on latency & 50% increase on DL

•Field trial: 17% hit rate at peak traffic time & 16% saving on transport BW • Differentiated wireless BW and latency guarantee provided by BS

Local breakout: trial of Multi-visual-angle live program of competitive sports

- Scenarios: smart gateway, local content forwarding etc.
- Service delivery by eNB
 Service delivery by MEC
 Major advantage: latency reduction
 Key concerns: Security
 - More than 90 small cells

NGFI (xHaul) since 2014 (Function Partition since 2012)

NGFI

Features:

- · Separation of ant-related processing and non-ant-related processing
- Separation of baseband upper and lower layer processing
- · Layered coordination to address interference for area of different scale
- · Support 5G new technologies e.g. UDN, massive MIMO

NGFI considerations

The objectives of NGFI

- Enable statistical multiplexing for FH
- Decoupling cell proc. & UE proc, and UL&DL
- Support 5G key tech., Massive MIMO etc.

The key is function re-split between BBU and RRU, & re-design of underlined transport networks

Ethernet as promising (Low-cost & Flexible)

- NGFI encapsulation: IEEE 1904.3 WG (2-3 Jun 2015 in Beijing hosted by CMCC)
- · Latency enhancement: TSN
- Synchronization: IEEE 1588WG & ITU-T

中国移动

21

NGFI WP and Related work in IEEE 1914

- IEEE 1914 (NGFI) WG officially approved in Feb. 2016, led by CMCC
- 1st NGFI WS held & NGFI WP released in June, 2015
- MoU signing with Broadcom, Intel, Alcatel-Lucent, HuaWei, ZTE, Nokia, Xilinx & Altera

Broadcom Corporation

Intel China Research Center

IEEE 1914 WG (7 Founding members)

- Officially approved: Feb. 2016
- Sponsor: IEEE COM/SDB
- 7 founding companies with more than 100 subscribers so far from ~40 companies
- Target: efficient & scalable FH for 5G
- Scope of 1914.1 project:
 - NGFI transport network architecture
 - Requirements
 - Function split analysis for LTE
- http://grouper.ieee.org/groups/1914/
- The first NGFI WG meeting held on 25 28 April, San Jose
- Possible transfer of 1904.3 RoE project to under 1914 WG;
- Potential collaboration with 802.1 CM

MWC2014 MWC2015 PT/EXPO China 2015

27

China Mobile 5G Prototype Demo (MWC2016)

Mini C-RAN/NGFI: CMCC & Intel/WindRiver

FuTURE 5G SIG

- FuTURE 5G SIG launched in Mar. 2014
- FuTURE 5G WP 1.0 (Nov 6, 2014):
- FuTURE 5G WP 2.0 series
 - FuTURE 5G WP 2.0 (Nov 6, 2015)
 - Topical WP 2.0a to 2.0g (Nov 6, 2015)
 - Topical WP 2.0h: 5G High Mobility (Jun, 2016)

29

IMT-2020 (5G) PG Progress

★ 31 May – 1 Jun, 2016 in Beijing

★ Oct. 2016 in Rome (5G PPP)

National S&T Major Project "NextGen MBB Comm. Network"

(2016.1-2017.12)

• Project 1 5G R&D

- 1.1 5G standardization overall scheme research & promote (CMCC, in part)
- 1.2 5G high performance BS AD/DA converter test sample R&D
- 1.3 5G BS high-freq. wide-BW PA test sample R&D
- 1.4 5G BS high-freq. wide-BW RF filter test sample R&D
- 1.5 5G high-mobility wide-area seamless coverage scheme and test-bed R&D (CMCC, in part)
- 1.6 5G low-power massive-connection scheme and test-bed R&D
- 1.7 5G high freq. comm. scheme & test-bed R&D (CMCC, in part)
- 1.8 5G Ultra dense networking scheme & test-bed R&D
- 1.9 5G new multiple access scheme & test-bed R&D

1.10 5G RAN architecture & system R&D (CMCC, lead)

- 1.11 5G network based high-precision indoor location R&D
- 1.12 Automatic driving oriented 5G key tech. research & demo (CMCC, in part)

• Project 2 LTE-A R&D and Industrialization

2.11 LTE-V wireless transmission tech. standardization & prototype (CMCC, in part)

Project 3 Mobile Network Supports Industrial Internet

3.1 Wireless mobile oriented industrial internet (CMCC, in part)

31

CMCC 5G Activities

• ITU:

- 8 KPIs proposed by China adopted by ITU-R;
- Co-lead ITU-T IMT-2020 FG work and contribute to the network softwarization paper and gap analysis.

IFFF

- IEEE 1914 NGFI WG led by CMCC officially launched in Feb. 2016;
- Contribution on White Paper of IEEE SDN Initiative.

· NGMN:

- Lead in 5G requirements study, actively contributed tech & network architecture study, & jointly issued NGMN 5G WP;
- As NGMN representative, providing Operators' vision on 5G scenarios & tech requirements to 3GPP & ITU.

• ETSI NFV:

- Founding member of NOC; Extended NFV scope from CN only to E2E including RAN;
- Contribution on NFV WP 1.0 to 4.0;
- PoC contribution to demonstrate vRAN capability;
- Prioritization on feature proposals for NFV 2016 planning, feedback on NFV stage 3 planning etc.

CCSA

- Lead in CCSA NGFI study Item, contribution on NGFI study report;
- Actively involved in candidate high freq study, including channel measurements;
- Actively involved in dedicated spectrum study for V2V.

CMCC 5G Activities in 3GPP

- · 3GPP SA2, lead in the 5G network architecture design SI
 - "Study on Architecture for Next Generation System" led by CMCC approved on Oct. 22, 2015 with 48 companies' co-signature(expected reach to 55 companies in SA plenary). It is the first large-project related to 5G standardization led by China;
 - Already developed 28 high-level requirements, 19 key issues (9 of them are basic), initial high level architecture, candidate solutions.
- 3GPP SA1, lead in "SMARTER-Network Operation (NEO)" SI
 - SMARTER: New Services and Markets Technology Enablers
- 3GPP 5G RAN Standardization Timeline
 - Sep. 2015, SI on high-freq channel modeling initiated;
 - Dec. 2015, 5G requirements SI initiated (CMCC lead);
 - Mar. 2016, 5G technology SI initiated (~50 submissions from RAN1 to RAN4);
 - Mar. 2016, "Study on Context Aware Service Delivery in RAN" Initiated (CMCC lead) in RAN3
- Sep 2015, RAN 5G workshop:
 - Phase 1 WI to be completed at the 2nd half of 2018, targeting network deployment at 2020;
 - Phase 2 WI to be completed at end of 2019, for ITU spec submission deadline with all the requirements satisfied.

RAN1~RAN5 held in Nanjing, from 23 May to 27 May, hosted by CMCC and partners!

33

Progress in 3GPP RAN1 (May, 2016)

- Made agreements for forward compatibility/compatibility of different features, including
 - Support of multiplexing different numerologies within a same NR carrier bandwidth
- Made working assumptions/agreements on NR numerology/frame structure, including
 - Support of flexible NW and UE channel bandwidth
 - Support of flexible HARQ scheduling timing and asynchronous DL/UL HARQ
- · Made agreements for waveform/multiple access, including
 - Evaluation cases and evaluation assumptions for waveform
 - Support of synchronous/scheduling-based orthogonal multiple access for DL/UL transmission schemes at least targeting for eMBB
 - Evaluation assumptions for autonomous/grant-free/contention based UL non-orthogonal multiple access
- Made agreements for multi-antenna schemes, including
 - Study on potential technologies such as beamforming, RS structure and CSI acquisition, etc.
- Made agreements for evaluation assumptions, including
 - Evaluation assumptions for following deployment scenarios

Indoor hotspot, Dense urban, Rural, Urban macro, High speed, Extreme rural, Urban coverage for massive connectivity, Highway, Urban grid

- Some other evaluation assumptions agreed in relation to:

mMTC, URLLC, V2X, MIMO & antenna modelling, UE PA model, Waveform evaluations, Multiple access evaluations

Summary of 5G NR RAN2#94 (May,2016)

Standalone NR

Architecture:

Intra-NR aggregation:

- 1: Aggregation of NR carriers to be studied
- 2: As in LTE, NR shall study both lower layer aggregation (e.g. CA-like) and upper layer aggregation (e.g. DC-like)
- 3: User plane provides an in-sequence, secure and guaranteed delivery for transport of RRC signaling.

User Plane

LTE L2 functions are consider as a baseline for NR. Order, allocation to sublayers, and merger of functions needs to be considered depending on use cases

Control Plane:

Study the introduction of a RAN controlled "state" characterised by, at least:

- 1: UEs in RAN controlled state should minimise signalling, power consumption, and resource costs in the RAN/CN, which maximises the number of UEs utilising (and benefiting from) this state
- 2: Data transfer with low delay (as RAN requirements)

Tight interworking with LTE

Agreements:

- 1: DC approach for LTE-NR aggregation will be studied (FFS: 3c/1a-like or other UP architecture)
- 1a: Both LTE as master and NR as master will be studied...
- 2: The CA based LTE-NR aggregation will not be studied as part of the study item
- UP: Study both split bearer (3C bearers) and direct routing (1A bearers) for LTE-NR multi-RAT.

Mobility

NR eNB corresponds to 1 or many TRPs

NR shall support a state with network controlled mobility handling and a state with UE controlled mobility

Two levels of network controlled mobility:

- 1: RRC driven at 'cell' level.
- 2: Zero/Minimum RRC involvement (e.g. at MAC /PHY)

FFS: definition of a cell

35

3GPP RAN3 Progress - Internal RAN Logical Arch (May, 2016) ⇔ 中国移动

■ Deploy scenarios (Agreed CU and DU deployment scenario, aligned with RCC and RRS architecture)

Agreed to study the options against LTE and NR, which is aligned with our study (NGFI)

Preference Option 2 and 3 Option 7 (Ideal Fronthaul) (Ideal Front

Agreed on the following evaluation criteria for functional split

1) Protocol Split option; 2)Required bandwidth; 3) Max. allowed one way latency; 4) delay critical feature.

IMT-2020 PG 5G Tech R&D and Sys Trial Plan (Jan, 2016) 中国移动

Led by CAICT; Operators, Manufactures & Scientific institutes actively involved.

Led by Operators in China; Manufactures & Scientific institutes actively involved.

- Phase 1: key tech R&D and trial
- Phase 2: Product R&D and trial
 - > Key Tech Verification (2015.9-2016.9): key tech prototype performance test
 - > Solution Verification (2016.6-2017.9): 5G BS prototype performance test
 - > System Verification (2017.6-2018.10): 5G networking performance test, and typical service demo.

39

5G Trial Plan towards 2020

43

Big Data Analytics for Network Optimization

44

NSFC: Theory and Application of Wireless Big Data

Example of wireless big data sources

Example of big data based multi-RAT system

NSFC R&D Themes for big data (2017-2022)

- Modeling of various big data: user data, signaling, channel state information, user-context, application data, location, mobility, environments, weather, user behavior, etc, in various deployment scenarios
- Availability of accurate CSI with minimum overhead, to support advanced transmission schemes in ultra dense network with massive antennas and connections
- Big data based massive multiple access schemes with efficient coding/decoding, resource allocation and scheduling
- Big data based efficient air interface design, radio access network architecture, network deployment and operation for cost, spectrum and energy efficiency
- Big data platform to fully test and demo big data theories and applications.

Open X: the Open Source Communities for Soft Networks @ 中国移动

Accelerate the adoption of fog computing for IoT

- Architecture
- Communication
- Manageability
- Security
- SW infrastructure
- **Testbeds**

Tools and platforms for SDN

- **ONOS**
- CORD
- **OVX**
- Mininet
- XOS

Reimagine the traditional approach to building and deploying telecom network infrastructure

- Access
- Backhaul
- Core

platform&technologies for

- Radio technologies
- **Transport**
- Core
- Security platform

47

Summary

- World's Largest 4G/4G+ Network: ~1.28M BSs, ~409M Subscribers
- Sustainability (5G perspective in 2011): Performance + Efficiency/Agility
 - Themes: Green, Soft, and Super Fast
 - **Technology Pearls: Rethink Fundamentals**
- E2E 5G: SDX (UCN + SDAI)
 - Enabling Tech: SDN/NFV, UCN (C-RAN/NGFI), and SDAI/MCD
 - Sample Demo:
 - Service on Edge (MEC) on Greener & Softer Network (MWC2014)
 - Live Migration on Virtualized C-RAN, Invisible BS (mMIMO) with SmarTile (MWC2015)
 - SDAI /SmarTile 2.0 (MWC2016), Mini C-RAN/NGFI (MWC2016)
- China Mobile 5G Joint Innovation Center, Test & Trials
- Verticals, Open 5G (Open-O) & Big Data (CMCC 7K TB/day)
- SDO's, Fora & Alliances
- LTE-A Pro v.s. NR

Thank you!

